
Eric Sink
www.ericsink.com

No vendor crapola

•  Veracity is open source.
•  I assume you already know what a

DVCS is.
•  There will be curly braces and

semicolons in the slides.

5 Benefits of DVCS

•  Fast
•  Cruise Ship
•  Moscow
•  Dell
•  Lego

Fast

•  Developer operations, everything
local

Cruise Ship

•  Disconnected operation

Moscow

•  Distributed teams, offshoring

Dell

•  Scale out
instead of up

Lego

•  Complex processes

So …

•  Distributed source control tools are
great

Luckily…

•  Source control is the only thing
software teams ever use.

•  

Other stuff
•  Bug tracking
•  Wiki
•  Twitter-ish things
•  Discussion forum
•  Agile planning
•  Support tickets
•  Build tracking
•  Requirements
•  Test management
•  Etc.

Integration

•  The trend is toward seamless
integration of all the tools that
software teams use.

•  Trying to mix centralized and
decentralized gets just what you
would expect.

Oil and Water 
Fast Source code repo is fast, but I have to hit the

server for every other operation.

Cruise Ship I can checkin my code now. Later I’ll update bug-
tracking, wiki, etc. If I remember.

Moscow Local server for DVCS, but for everything else,
we still need dependable net access to a server in
the home office.

Dell And that server was more expensive than my
house.

Lego And our whole development process is dictated
by quirky constraints of the central server.

What we need
•  The benefits of DVCS
– But for the non-source-code stuff

•  Not just tree/filesystem data
– But records and fields

•  Changesets
– Push, pull, merge

Other approaches

•  Ditz, ticgit, git-issues, Bugs
Everywhere
– Store everything in the tree
– Merge: Line-based source code merge

•  Fossil (www.fossil.org)
– Decentralized database
– Merge: Latest timestamp wins

Veracity

•  www.sourcegear.com/veracity
•  Apache License Version 2.0

•  Decentralized Database
– Template-driven merge
– “zing”

Merging

•  Automerge using rules specified in
the template

Correctness

•  Attitudes about automerge from
source control

•  A merge is correct if the template
defines it to be

•  It is possible to define a template
such that the merge cannot fail

•  Log of changes made

Two basic problems to solve

•  Conflicting changes
•  Constraint violations

Non-Conflicting Changes

•  Two people add unrelated records
•  Two people modify a record, different

fields
– If template allows this
– Example

Conflict

•  Two people modify same record,
same field

•  Template can specify a resolution

Unique constraints

•  Uniqueness in a distributed system is
a classic problem

•  GUIDs

•  g6c0ae12907dd4789b880a68026ac498f5df1aa2c935611dfbbd860fb42f09aca

•  Friendly bug IDs

Uniqify

•  Automatically resolve unique
constraint problems on merge by
modifying one of the records.

•  Which one to modify?
•  How to modify it?

An ounce of Prevention

•  Generate friendly ids that are likely
to be unique

•  Then uniqify during merge when
necessary

Example

•  userprefix + digits
•  E0001

Followups

•  Lots more cool stuff in Veracity
– sourcegear.com/veracity
– www.ericsink.com

•  @eric_sink
•  eric@sourcegear.com
•  SourceGear booth

